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Prospects are examined for modifying the conventional statistical mechanics of condensed phases to
describe stretched and/or superheated metastable liquids. The representation chosen for this task is that
of “inherent structures,” i.e., multidimensional potential minima, and their basins of attraction. By ex-
amining inherent structures for the one-dimensional Lennard-Jones system, it becomes clear that in gen-
eral large-void-containing inherent structures and their basins must be removed from the canonical par-
tition function. With an appropriate choice of maximum allowable void size, this leaves the properties
of the equilibrium liquid essentially unchanged, while suppressing the vaporization transition. The
void-elimination constraint causes a soft-mode instability to terminate the metastable extension of the

liquid at a limit of stretching or superheating.

PACS number(s): 05.20.Gg, 05.70.Ce, 65.90.+1

I. INTRODUCTION

Metastable forms of matter have always played a
significant role in technology, and therefore have present-
ed substantial challenges to the deductive and explanato-
ry capacity of basic science. This paper is devoted to the
improved understanding of metastable liquids,
specifically those in the related states of superheating or
of stretching (negative pressure). The objective is to con-
struct a statistical mechanical formalism, essentially free
of approximation, that describes these metastable liquid
states, while coherently and naturally connecting them to
states of thermodynamic equilibrium.

Owing primarily to the existence of clever experimen-
tal techniques, a substantial body of data is now available
for both superheated [1-5] and stretched [5-9] liquids.
In particular, limits of metastability are known for many
substances: the explosive vaporization temperature point
for superheating, and the disjoining pressure point for
stretching. These striking phenomena and their measure-
ments alone motivate the development of a general
theory of metastable liquids, quite apart from other con-
siderations.

The approach adopted here stems from the “inherent
structure” description of the condensed phases of matter
[10-13]. In fact it closely parallels a formalism created
to describe supercooled liquids [14—16] with logical con-
nections mentioned below at appropriate points. The
viewpoint offered here should be beneficial both for the
interpretation of experimental data, and for the design of
computer simulation studies of metastable matter.

Section II provides background definitions and com-
mentary for the general “inherent structures” approach
for condensed phases [10—13]. This is followed by the ex-
amination of an elementary illustrative example in Sec.
III, the one-dimensional Lennard-Jones system; its prop-
erties strongly suggest key attributes that the more gen-
eral metastable-state formalism should possess. Section
IV then presents that formalism. Section V contains
some concluding remarks.
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II. BACKGROUND

We shall deal with a volume-V closed system contain-
ing N, particles of species 1,..,N, particles of species v.
These species may be either structureless spherically sym-
metric objects, or molecules with nonspherical shapes
and internal degrees of freedom describing conformation-
al flexibility. Interest ultimately lies in intensive proper-
ties evaluated in the large-system limit, that is, where ¥V
and the total number of particles

N=3 N,

a=1

(2.1

pass to infinity at fixed number densities.

The total interaction potential ® generally comprises
three types of contributions. The first involves in-
tramolecular distortional force fields, if any. The second
encompasses all interparticle interactions. The third in-
volves external interactions of the particles with con-
tainer walls, and with the gravitational field (usually
negligible). In many theoretical or simulational applica-
tions, the third category is suppressed in favor of periodic
boundary conditions, especially when surface effects
would be a distraction rather than the primary object of
attention.

Let R represent the configurational vector specifying
the entire system. If species a has i, internal degrees of
freedom (rotation, vibration, conformation), then the
number of components for R will be

c=3 (3+i,N, .

a=1

(2.2)

In the following we will be concerned with the geometry
of the ®(R) hypersurface in the C+1=D dimensional
space of (R,®), and how it affects both equilibrium and
metastable state properties.

The canonical partition function Z provides the usual
connection to equilibrium properties for a system equili-
brated at temperature 7. To the extent that classical sta-
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tistical mechanics applies, we can write (B=1/kpT) [17]:

Z =exp(—BF) ,

v —1
= |K]I Na!) J dR exp[ —B®(R)] . 2.3)
a=1

Here F is the Helmholtz free energy. The normalizing
quantity K is independent of ¥ and has the same dimen-
sions as R; it would be a product of mean thermal deBro-
glie wavelengths if the system contained only structure-
less spherical particles, but in any case is unaffected by
interparticle interactions and plays no role in the present
context. The equilibrium-state pressure derived from
(2.3),

p=—(3F/3V),, (2.4)

must, in the thermodynamic large-system limit, be non-
negative.

Without significant loss of generality one can assume
that & is continuous and differentiable with respect to all
components of R. Furthermore it is bounded from
below. But given these common features, the detailed
form of ® varies drastically from substance to substance
in ways that reflect their chemical distinctions. The su-
perheating and stretching phenomena owe their existence
to attractions between particles, and these exert a pro-
found influence on the presence and distribution of ® ex-
trema (minima, saddle points, and maxima) in the C-
dimensional R space.

The differential geometry of the ® hypersurface can be
used to transform canonical partition function Z Eq.
(2.3) in a fundamental and useful way. This transforma-
tion is based upon an exhaustive division of the
configuration space into nonoverlapping “basins of at-
traction” B, each one of which contains a single ®
minimum @ within its interior. Basin B, is defined to be
the set of all points R that map onto the interior
minimum a by means of the following gradient descent
equation (s =0):

w-(0R /0s)=—V®(R) . (2.5)
Here w is a C X C matrix of non-negative weights. For
the simplest version of (2.5), the steepest descent map-
ping, w is just the unit matrix; an alternative motivated
by chemical reaction theory also uses a diagonal w, but
with atom masses arrayed along that diagonal [18]. Al-
ternative choices for w produce different basin shapes,
but their number remains unchanged, each includes a sin-
gle minimum, and saddle points (transition states) remain
segregated on basin boundaries. Starting from essentially
any system configuration R at s =0, the solution to Eq.
(2.5) converges to the relevant minimum as s approaches
plus infinity.

The ® minima, and hence the corresponding basins,
may be classified by their depths. For this purpose we
denote the potential energy per particle by

¢=®/N . (2.6)

In the large-system limit for two- and three-dimensional

FRANK H. STILLINGER 52

systems, the density of substantially distinct minima
whose depths (on a per-particle basis) equal ¢ can be
asymptotically represented in the following way:

exp[No(4)],

where the non-negative function o is independent of N.
Strictly speaking, o(¢) can only be defined over the inter-
val

2.7

=<9, , (2.8)

where ¢; corresponds to the absolute ® minimum (nor-
mally a crystalline state), and ¢, corresponds to the
“worst” particle packing (the highest-lying relative
minimum).

In a general but quite precise sense, dynamical motion
of the configuration point R within a single basin can be
viewed as vibration about that basin’s minimum. Such
vibrations can of course be interrupted by transitions be-
tween neighboring basins, though the lower the tempera-
ture the less frequent will such transitions be. For those
basins whose minima have depths within a narrow range
around ¢, it is natural to define a mean vibrational free
energy per particle f(f3,¢) by means of the expression

exp[ —NBf(B,¢)]=¢( fB dRexp[ —BA,®(R)]), .

2.9)
Here each integral spans the interior of a single basin,
and the average ( - - - ), includes all basins lying within a

narrow depth range around ¢. A,® is the potential ener-
gy within basin B,, measured from its value ®, at the
minimum

A, ®(R)=®(R)—P, . (2.10)

The definitions given for o(¢) and f(B,¢) permit the
canonical partition function Z to be rewritten in the fol-
lowing way [10-13]:

exp(——BF)=K"1fd¢exp{N[a(¢)—B¢_Bf(B,¢)]} ,
(2.11)

substantially without approximation in the large system
limit. Moreover, that same limit asymptotically permits
replacement of the ¢ integral by the maximum value of
the integrand, located say at ¢=¢,,. Consequently we
have

BF /N ~(InK)/N +B¢,, +Bf (B, ¢, ) —o(d,,) .

The temperature and density dependent quantity ¢,,
satisfies the extremum condition

ol(é,,)—Bd,, —Bf(B,¢,,)=maximum ;

it is the most probable basin depth to be encountered by
the system under the prevailing conditions. If tempera-
ture is very low (large B), ¢,, will be at or just above ¢,
and will correspond to mechanically stable particle pack-
ings that exhibit virtually perfect crystallinity. Above the
melting temperature, by contrast, ¢,, will be substantially
higher, and will correspond to basins that dominate the

(2.12)

(2.13)
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liquid phase, and whose minima amount to amorphous
particle packings [12,13]. Thermodynamic phase transi-
tions are associated with singularities in ¢,, as a function
of temperature and density.

III. ILLUSTRATIVE EXAMPLE

In order to help clarify the general remarks of Sec. II,
as well as to pave the way for the metastable-state
modifications to follow, it is prudent to examine a specific
simple model. The case chosen for illustration is the
one-species, one-dimensional Lennard-Jones (LJ) system.
Let N be the number of Lennard-Jones particles, and sup-
pose they are confined to a “box” (line segment) of length
L. Periodic boundary conditions will be imposed, so the
potential energy @ has the form (in reduced units)

+o N-—1 N
La)= 3 S S ul—x;+ul),
pu=—ow i=1 j=i+l1

D(xy, ..

3.1)
v(y)=4(y 12—y ~6) .

Here particle i is located at position x; in the primary
cell, and the summation over integer index p accounts for
all periodic images of the primary cell. For the large sys-
tem limit that is of interest here, the short-range charac-
ter of v implies that only u=—1,0,+1 need to be con-
sidered, i.e., only interactions of particles in the primary
cell among themselves and with the immediately flanking
images are significant.

Provided that the system length is restricted to the
range

O<L/N={,=1.1193, (3.2)

® in Eq. (3.1) possesses only a single type of minimum,
namely, the periodic arrangement of particles that
stretches across the primary cell and seamlessly connects
to images. Permutations of particles along the line in this
periodic array correspond to nominally different, but en-
ergetically identical, minima. On account of the free
translation that is permitted by the periodic boundary
conditions, the number of such equivalent minima is
(N—1

The binding energy ® /N for periodic arrays reaches its
lowest value at L /N=¢,

O/N=¢,=—1.03473227.. (L/N={C) . (3.3)
Reduction of L below this point causes ¢ to rise mono-
tonically as the repulsive cores of neighboring particles
are forced together. The length per-particle ¢ produces
a stress-free periodic chain.

Expanding the system at least modestly beyond this
point £, continues to maintain the periodic array as a
legitimate potential energy local minimum. However, the
stretching causes the chain of particles to go into tension,
and the binding energy rises. But these (N —1)! minima
are then joined by N! others that amount to broken
chains with two free ends. Since these latter are stress-
free, they display internal spacing ¢, and binding energy
per particle ¢,. Consequently the broken chains yield ab-
solute minima, while the unbroken periodic arrays yield
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higher-lying relative minima. It should be noted in pass-
ing that fragmentation into two or more shorter chains
cannot produce further minima; although they are weak
at large separations, particle attractions between separate
“clusters” would cause reaggregation under the gradient
descent mapping.

Stretched periodic chains lose their mechanical stabili-
ty (i.e., cease to be relative minima) when L /N increases
to

£,=1.240945 . (3.4)

At this breaking point the chains develop a long-
wavelength instability (in phonon language, a k =0+ soft
mode develops an imaginary frequency) that could lead
to separation at any one of the N nearest-neighbor con-
tacts. The potential energy and its rate of change at this
instability point are given by

1=—0.814 315,

[d¢/d(L/N)]/1%2.486 68 . (3.5)
When L /N > ¢, only the broken-chain minima exist.
Figure 1 indicates how the depths of the minima vary
with system length.

In this one-species case with structureless particles, it
is sensible only to use the unit matrix for the weighting w
in Eq. (2.5). The mapping that defines basins for each
minimum consequently is the strict steepest-descent con-
nection on the ® hypersurface. In principle, the vibra-
tional free energies follow as specified in Sec. II, except
that averaging over basins is not necessary since at most
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FIG. 1. Depths of potential energy minima versus system
length for the one-component, one-dimensional Lennard-Jones
system.
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two distinct ¢ values are possible. Let f, » and f, denote
the vibrational free energies, respectively, for the periodic
and the broken chains. Then the canonical partition
function adopts one of three forms depending on the sys-
tem length

Z(L<N¢y)~(KN) 'exp{ —NB[¢,(L/N)

+£,(B,L/N)1} ; (3.6a)

Z(Nfy<L<N¢,)
~(KN)"'exp{ —NB[4,(L /N)+f,(B,L /N)]}

+K “lexp{ —NB[do+f,(B,L/N)1} ; (3.6b)

Z(N¢,<L)~K 'exp{—NB[do+f,(B,L/N)]} .
(3.6¢)

In spite of the format changes at ¢, and ¢, the parti-
tion function at positive temperature remains nonsingular
at these points since the one-dimensional LJ system has
no phase transitions. The vibrational free energies
behave as functions of L in just such a way as to compen-
sate for the changes. In particular, the (N—1)!
periodic-array basins vanish in size as L /N approaches
the stretching limit ¢;.

Throughout the intermediate density range limited by
¢, and ¢, the broken-chain term in Eq. (3.6b) essential-
ly completely dominates the canonical partition function
and all thermodynamic properties that would be derived
therefrom. But it is clear that the recessive periodic-
array term in Eq. (3.6b) offers a natural definition of a
stretched metastable state applicable to this intermediate
regime. In other words, we simply project out of con-
sideration all broken-chain minima and their basins, and
extend the one-term expression in Eq. (3.6a) up to ¢ ;. At
sufficiently low, but positive, temperature this will yield
metastable states in tension (negative pressure). It must
be emphasized that ¢, amounts to an absolute endpoint
of the metastable state specifically for this one-
dimensional LJ system; a different choice of interaction
potential would in general lead to a different absolute end
point (but still with soft-mode, vanishing-basin charac-
ter).

Although the simple form (3.6a) serves for definition of
the metastable extension, it does so at a price. Free ener-
gy is strictly and inevitably singular at ¢ with this proto-
col. The singularity is associated with the sudden change
in shape of the retained basins, due to first appearance of
the rejected broken-chain basins at ¢, and their subse-
quent growth as L /N increases. This in turn confers
singular behavior on f,. However the effects of this
singularity should be minor, especially at low tempera-
ture where vibrational excursions from basin minima
should seldom reach the basin boundaries.

While the one-dimensional LJ system is in the inter-
mediate density range, £y<L/N <¢,, each of the
periodic-array basins will have NV transition states (saddle
points) in their boundaries; these correspond to the N
breakage sites. The lifetime of the stretched metastable
state reflects the rate at which the dynamical
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configuration can reach and pass through the neighbor-
hood of any one of those saddle points. As L /N in-
creases toward ¢, the elevation of the saddle points
above the basin minimum declines to zero, implying a
shorter and shorter lifetime at any positive temperature.

IV. BASIN RESTRICTION

The potential energy minima, or inherent structures,
are far more diverse for two- and three-dimensional sys-
tems than for the elementary one-dimensional LJ exam-
ple of Sec. III. In particular, these more numerous kinds
of minima possess depths distributed over a continuous
range of the intensive parameter ¢, permitting definition
of the enumeration quantity o(¢#), Eq. (2.7). By contrast,
at most two distinct ¢ values appear in the one-
dimensional LJ system, rendering definition of o(¢) via
(2.7) strictly inapplicable.

The major benefit of the one-dimensional LY example is
that it legitimizes a projection procedure for stretched or
superheated metastable states that only retains void-free
inherent structures and their basins in the partition func-
tion. The voids to be rejected amount to cracks or cavi-
tation sites in the stretching case, and to nascent boiling
bubbles in the case of superheating. As has been pointed
out before [3,5] there are really just variants of the same
general metastability scenario, where the vapor pressure
exceeds the ambient pressure in the liquid.

To be precise, we shall eliminate all basins for inherent

" structures with the property that a radius-r, sphere could

be inserted somewhere without overlapping the position
of any atomic nucleus. In any specific application it is
obviously necessary to fix r(, but for the moment we can
suppose that the test sphere has about the volume of 20
to 50 close-packed particles. Imposition of this condition
should have the effect of eliminating “weak spots” in the
dense liquid medium that could act as nucleation sites for
cracks or bubbles. At the same time this should have vir-
tually no influence on the stable liquid, since spontaneous
appearance of empty cavities of the size considered
should be a very rare occurrence.

Even after imposing the above no-void constraint, the
surviving inherent structures should still have a depth
distribution that asymptotically conforms to the earlier
format (2.7), now to be expressed

exp[No(¢)] . 4.1)

However the removal of void-containing inherent struc-
tures (with results denoted by subscripts) implies that

o (d)=o(¢)

over the ¢ range for which both functions are defined. A
vibrational free energy f,(B,¢) can next be defined in ex-
act analogy to the prior Eq. (2.9), but where the basin
averaging involves only void-free inherent structures.

expl —~NB7,(8,8)1=( [, dR expl ~BA, ®(R)))

(4.2)

s,¢

(4.3)

It then follows that the system free energy can be calcu-
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lated by the same procedure as before to yield
BF; /N ~(InK)/N +B¢ s +Bf(Bsms) — 0 (brns) »

where in this metastable extension ¢, satisfies the
modified extremum condition analogous to Eq. (2.13):

O (Pmg) —Bds —BS s (B, ) =maximum . (4.5)

The pressure in the resulting liquid, whether in a stable
or a metastable condition, follows from the thermo-
dynamic relation (2.4), with F; replacing F.

Figure 2 symbolically shows a portion of the p-V plane
for a typical substance, indicating the liquid-vapor coex-
istence curve from the triple point (TP), through the criti-
cal point (CP), and into the dilute vapor regime. The
figure also indicates two thermodynamic paths crossing
the liquid branch of the coexistence curve at a common
point (B). One of these (ABC) corresponds to iso-
thermal expansion of the initially stable liquid to a pres-
sure that is less than the equilibrium vapor pressure at
the given temperature, and into the negative-pressure
stretched-liquid regime. The other (DBE) corresponds
to isobaric heating past the normal boiling temperature
for the given pressure. The dotted extensions are possible
because imposition of the void-free constraint on inherent
structures frustrates the normal equilibrium phase
change to vapor in both cases.

The theoretical strategy just described has a close
parallel in the analysis of liquid supercooling [14—-16]. In
that case, the relevant constraint projects out of con-
sideration all inherent structures that contain crystallites
(nucleation sites) that are compact and contain roughly
20-50 particles. The resulting enumeration function o,
and vibrational free energy per-particle f, for the surviv-
ing amorphous inherent structures (denoted by subscript
a) form the basis for study of supercooled liquids and
glasses [14—16]. Both the void-free and crystallite-free
constraints in principle require the use of pattern recog-

(4.4)

p
LIQUID
D
1
1
\
TPé \ ,’
0 Y
Wi V/N
\\41
jc

FIG. 2. Metastable extensions, into the liquid-vapor coex-
istence region of the pressure-volume plane, of two liquid-state
curves. Trajectory ABC corresponds to isothermal expansion,
and as shown may enter the negative-pressure regime; trajectory
DBE corresponds to isobaric heating. Termination points C
and E represent the related sudden processes of cavitation and
of explosive vaporization, respectively.
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nizing capacity to sift through all inherent structures and
to carry out the respective rejections. It is even possible
to apply both constraints (projections) at once to produce
0.(d), fa(B,¢), and an equation of state for a liquid that
frustrates both vaporization and crystallization, while
substantially reproducing the equilibrium equation of
state where the liquid is thermodynamically stable. This
permits description of supercooled liquids in tension.

Termination points (C and E) have been indicated for
the two metastable extensions in Fig. 2. The no-void con-
straint implies that qualifying inherent structures would
develop instabilities, analogous to that of the one-
dimensional LJ system, as the volume per particle in-
creases. In fact there must be some characteristic max-
imum volume per-particle ¥, /N which is consistent with
the existence of any inherent structure free of ry-radius
voids. The termination points for the metastable exten-
sions could not be to the right of this location in Fig. 2.
It should be emphasized that ¥, is a monotonically in-
creasing function of ry, and in fact in the rj— o limit
Vo/N should diverge, owing to the possibility of very
tenuous ‘“‘airogel” structures (low-density networks).

An experimentally significant termination criterion
should not be based on ¥V, /N, however. Rather, it seems
most natural to base it on the lifetime of the metastable
state. Just as in the case of the glass transition for super-
cooled liquids, the time scale of observation should at
least be weakly relevant [19]. Requiring, for example,
that a 1 cm? sample have a mean lifetime of 10~ s would
identify a termination point ¥, /N; increasing the mean
lifetime to 10 s would displace the termination point to
V, /N, where

V,<V,<V,. 4.6)

However the strong dependence of nucleation rates on
externally controllable parameters [20] suggests that V,
is only slightly less than V.

Locating these termination points for any given many-
particle model is not a simple task. One should expect it
to require detailed computer study of the participating
inherent structures, and of the dynamics that controls in-
terbasin transitions between allowed and disallowed
(void-containing) basins.

V. DISCUSSION

The void-free constraint on inherent structures that is
needed for superheated and stretched liquid metastable
states is only one of a wider class of configurational con-
straints that is useful for the general study of metastabili-
ty. Section IV also discusses the crystallite-free con-
straint that is relevant for supercooled liquids. Analo-
gous constraints can be formulated for metastability en-
countered in binary liquid phase separation, in liquid
crystal transitions, in solid-solid phase transitions, and in
surface transitions. Each example in principle requires
implementation of a pattern recognition capacity to carry
out the required projections on the full inherent structure
set for the system.

In connection with the metastable states of liquid wa-
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ter, it has been suggested that the supercooling limits and
the superheating or stretching limits together form a
common smooth-curve locus in the temperature-pressure
plane [21]. The present approach seems to require at
least a minor revision of this stability-limit conjecture.
The two relevant constraints, respectively eliminating
voids and crystallites, are logically independent and sepa-
rately generate their own stability-limit curves. While
these curves may indeed intersect in the negative-pressure
regime, they would be expected to do so at a cusp (slope
discontinuity), and would not together yield a single
smooth stability-limit curve.

Stability limits for superheating or stretching liquids
are often identified with a spinodal line at which the iso-
thermal compressibility diverges. Approximate equations
of state of the mean field, or van der Waals, type au-
tomatically supply such spinodal lines which, in fact, pass
through the liquid-vapor critical point [3]. The statistical
mechanical formalism presented in this paper does not
invoke a mean-field approximation, so it is natural to ask
if the metastable-state isotherms it produces terminate at
stability limits with infinite, or at least very large, iso-
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thermal compressibilities. The one-dimensional LY exam-
ple examined in Sec. III suggests that the answer is
affirmative, since a long-wavelength phonon instability is
involved. Recalling that generally a diverging compressi-
bility is associated with diverging long-wavelength densi-
ty fluctuations [22], we can reasonably expect a form of
soft-mode behavior to develop in three dimensions as
well. It should arise in part from vibrational modes that
develop vanishingly small frequencies, but also from a
statistical tendency for sub-r-radius cavities in the parti-
cipating allowed inherent structures to be found in spa-
tially aggregated arrangements.

A challenging research area for computer simulation
becomes clear as a result of these considerations. It is the
numerical study, for specific models such as the three-
dimensional LJ system, water, or the alkanes, of the void
distribution in inherent structures at the equilibrium
phase boundary, and at least slightly into the superheated
or stretched metastable regime. This could provide use-
ful guidance on the precise choice of r(, and on the valid-
ity of the diverging-compressibility conjecture for the sta-
bility limit.
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